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CHAPTER 1 MANIFOLDS AND SMOOTH MAPS

Let V' be a vector subspace of RY. Show that T (V) =V ifx € V.

Suppose that f: X — Y is a diffeomorphism, and prove that at each x
its derivative df, is an isomorphism of tangent spaces.

Prove that R* and R’ are not diffeomorphic if k = /.

The tangent space to S! at a point (a, b) is a one-dimensional subspace
of R2. Explicitly calculate the subspace in terms of @ and b. [The answer
is obviously the space spanned by (—b, a), but prove it.]

Similarly exhibit a basis for T,(S?) at an arbitrary point p = (a, b, c).

What is the tangent space to the paraboloid defined by
x4+ y*—z2=aqat(/a,0,0), where (a > 0)?

(a) Show that for any manifolds X and Y,
TeeX X Y) = T (X) X T(Y).
(b) Let f: X X Y — X be the projection map (x, y) — x. Show that
G xp 2 To(X) X T(Y) — T(X)

is the analogous projection (v, w) — v.

(c) Fixingany y € Y gives an injection mapping f: X — X X Y by
f(x) = (x, y). Show that df.(v) = (v, 0).

(d) Letf: X — X', g: Y — Y’ be any smooth maps. Prove that

d(fx g)(x.y) = dfx X dgy

(@) Letf: X — X X X be the mapping f(x) = (x, x). Check that

df.(v) = (v, v).
(b) If A is the diagonal of X X X, show that its tangent space T, ,,(A)
is the diagonal of T,(X) x T.(X).

(a) Suppose that f: X — Y is a smooth map, and let F: X — X X Y
be F(x) = (x, f(x)). Show that

dF(v) = (v, df (v)).

(b) Prove that the tangent space to graph (f) at the point (x, f(x)) is
the graph of df.: T.(X) — Ty (Y).

A curve in a manifold X is a smooth map ¢ — ¢(¢) of an interval of R!
into X. The velocity vector of the curve ¢ at time ¢,—denoted simply
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dc/dt(t,)—is defined to be the vector dc, (1) € T, (X), where x, = c(,)
and dc,: R' — T, (X). In case X = R* and c(¢) = (¢,(¢), . .., c,(?)) in
coordinates, check that

_Prove that every vector in T,(X) is the velocity vector of some curvein
X, and conversely. [HINT: It’s easy if X = R*. Now parametrize.]

83 The Inverse Function Theorem
and Immersions

Before we really begin to discuss the topology of manifolds, we
must study the local behavior of smooth maps. Perhaps the best reason for
always working with smooth maps (rather than continuous maps, as in non-
differential topology) is that local behavior is often entirely specified, up to
diffeomorphism, by the derivative. The elucidation of this remark is the
primary objective of the first chapter.

If X and Y are smooth manifolds of the same dimension, then the simplest
behavior a smooth map f: X — Y can possibly exhibit around a point x is
to carry a neighborhood of x diffeomorphically onto a neighborhood of
y ='f(x). In such an instance, we call f a local diffeomorphism at x. A neces-
sary condition for f to be a local diffeomorphism at x is that its derivative
mapping df, : T.(X) — T,(Y) be an isomorphism. (See Exercise 4 in Section
2). The fact that this linear condition is also sufficient is the key to under-
standing the remark above.

The Inverse Function Theorem. Suppose that /: X — Y is a smooth map
whose derivative df, at the point x is an isomorphism. Then f is a local
diffeomorphism at x.

The Inverse Function Theorem is a truly remarkable and valuable fact.
The derivative df, is simply a single linear map, which we may represent by a
matrix of numbers. This linear map is nonsingular precisely when the deter-
minant of its matrix is nonzero. Thus the Inverse Function Theorem tells us
that the seemingly quite subtle question of whether f maps a neighborhood
of x diffeomorphically onto a neighborhood of y reduces to a trivial matter
of checking if a single number—the determinant of df,—is nonzero!

You have probably seen a proof of the Inverse Function Theorem for the
special case when X and Y are open subsets of Euclidean space. One may be
found in any text on calculus of several variables—for example, Spivak [2].
You should easily be able to translate the Euclidean result to the manifold
setting by using local parametrizations.



